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Abstract— Convolutional Neural Networks (CNNs)

have shown their abilities in computer vision such as self-

driving car and image classification applications. However,

computation, power consumption, and memory require-

ment remain challenges for CNNs when applied in the do-

mains of edge devices. To address these challenges, one

of the possible solutions is using Binarized Neural Net-

works (BNNs). Researchers have demonstrated that BNN

models dramatically reduce computational complexity and

memory requirements with acceptable accuracy loss. This

paper presents an accelerator design for BNN inference

that minimizes the number of operations and elevates re-

source utilization on edge devices. We implemented our

accelerator on the Xilinx ZCU104 FPGA and evaluated it

with VGG-13 like BNN networks for Tiny ImageNet. Ex-

perimental results show that our accelerator can reduce, on

average, 99.6% operations and achieve up to 1974 speedup

on an FPGA platform compared to state-of-the-art de-

sign.

I. Introduction

In recent years, Deep Neural Networks (DNNs) have
achieved great success in computer vision. CNN is a particu-
larly popular type of DNN as it can effectively capture spatial
features from images. However, CNN models require massive
memory and consume much power in operation, which are
bottlenecks when CNNs are deployed to resource and power-
constrained edge devices.

A reduced bit width CNN - Binarized Neural Network
(BNN)[11][9] recently receives more attentions in academia
and industry. BNNs simplify the original activations and
weights from floating-point values to bipolar values (+1 or
-1), which are realized with 1 or 0 in actual hardware im-
plementations. Therefore, memory usage and computational
complexity are dramatically reduced. Meanwhile, MeliusNet
[1] has also shown that BNNs were still able to achieve good
accuracy and even outperformed the floating-point network
such as MobileNet [5].

[9][6] proposed that using the characteristics of binarized
values, BNNs can transform the frequently used multiplica-
tions and additions into XNOR operations and popcount op-
erations, respectively, which allow processing element (PE)
designs to be simplified even further without compromising
accuracy.

Furthermore, batch normalization functions in the outputs
of the convolutional layers and fully connected layers can be
transformed into a threshold comparison operation[12]. With
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this transformation, we avoid complex batch normalization
functions during inference.

However, there exist many redundant operations in the com-
putation of BNN inference. Thus, many studies [12] [3] [2]
[4] [7] [8] proposed methods to facilitate the BNN deploy-
ment on edge devices. [3] fused the convolutional layers and
the first fully connected layer into inter-layer pipelining archi-
tecture. Hence, the latency of binarized AlexNet, VGGNet,
and ResNet can be reduced a lot. Other studies removed re-
dundancy in the BNN inference. [4] proposed Out-of-Order
architecture that checks whether the binary output can be
generated earlier, thus reducing redundant operations in ex-
ecution. It pruned up to 30% operations on average with-
out any accuracy loss. Moreover, [7][8] combined their pro-
posed threshold-comparable-popcount (TCP) operations and
the threshold value update method to achieve a 79% operation
reduction. In [2], the authors introduced a filter’s convolu-
tional result sharing approach for convolution layers such that
the total number of operations could be reduced up to 70%.

In this work, we propose a design of accelerator which min-
imizes the number of operations during BNN inference. The
state-of-the-art PE-based architecture such as [12][4][7][8] de-
composed an XNOR-popcount operation between inputs and
filters into several segments. The decomposed filter is called
a partial-filter, where the length of each partial-filter is de-
termined to balance the throughput and hardware utilization.
The result generated by an XNOR-popcount operation be-
tween the partial-filter and its corresponding input is called
a partial-result. We exploit multiplexer-based similarity op-
eration to reuse the partial-result and increase the resource
utilization. The number of redundant operations during infer-
ence can be reduced effectively.

The main contributions of this work are as follows:

• We propose a design of accelerator for the convolution lay-
ers and fully connected layers, which reduces the number
of the operations dramatically without any accuracy loss
and elevates the resource utilization.

• The proposed architecture can be easily deployed and
modified with respect to the hardware resources, which
achieves up to 1974 speedup in BNN inference in our ex-
perimental results.

II. Preliminaries

A. Convolutional Neural Networks

A convolutional neural network is a type of supervised deep
learning architecture that can capture an image’s spatial fea-
tures. A common convolutional neural network such as VGG-
16 [10] contains convolutional layers, fully connected layers,
and pooling layers. A convolutional layer uses a sliding-
window with a stride of S to traverse and perform convolu-
tional operations between the input feature map and filter.
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Fig. 1. An example of a convolutional operation.

An example of a convolutional operation is shown in Fig. 1,
C ×D ×D filter can be expressed as follows:

Output = Fact(

C−1∑
i=0

D−1∑
j=0

D−1∑
k=0

wi,j,k · xj,k)

where wi,j,k is the weight of location (i, j, k) in the filter, xj,k is
the input on the location of (j, k) of input feature map, C is the
channel size of the input feature map, and D is the window size
of the filter. After the summation, the activation function Fact

is used to determine the output. Popular activation functions
include Sigmoid, ReLU, and Tanh. A fully connected layer
classifies the input feature map into various classes. The input
feature map in the fully connected layer is unfolded into a 1-D
input vector and then performs matrix multiplications with
the 1-D weight vector. The following equation determines the
output of a fully connected layer:

Output = Fact(

N−1∑
i=0

wi · xi + b)

where wi and xi are the ith value in the 1-D weight vector
and input vector respectively, b is the bias, and N represents
the length of the 1-D weight vector. The pooling layer down-
samples the input feature map with some pooling methods.
Common pooling methods are max pooling and average pool-
ing for extracting value from the K ×K window, and we use
the max pooling in this work. The max pooling operation can
be expressed as follows:

Output =
K−1
max
i,j=0

(xi,j)

where xi,j is the data located at (i, j) of the input feature
map. The max function extracts the maximum value from the
corresponding positions in the input feature map.

B. Binarized Neural Networks

The parameters in BNNs are restricted to +1 or -1. There-
fore, in the hardware implementation, we can use a 1-bit value
to represent them. With this property, [6] proposed that in
BNNs, only XNOR and bit accumulation (popcount) opera-
tions are needed instead of multiplications and additions. An
XNOR-popcount operation can be expressed as follows:

Output =

N−1∑
i=0

wi ⊙ xi

where wi and xi are the values of weight and input bit on
the location i in the 1-D weight and input vectors, N is the
length of the unfolded 1-D weight, and input vectors. [12]
proposed that the batch normalization layer on the output of
the convolutional and fully connected layers in BNNs can be
converted into a threshold comparison operation. Thus, we

(a)

(b)

Fig. 2. (a) An example of unfolding a 64x3x3 filter. (b) An example of
decomposing a 64x3x3 filter when output channel size = 64.

(a)

(b)

Fig. 3. (a) An example of a multiplexer-based similarity operation. (b)
Relationship between any two filters.

can combine the batch normalization and binarized operation
into one threshold comparison operation to reduce the usage
of hardware resources.

Moreover, [2] proposed a result sharing approach that sig-
nificantly reduces the number of redundant operations in the
convolutional layer. Using the property of BNNs, they de-
composed 3-D filters into 2-D filters and utilized the repeated
filters to share the convolutional results. Furthermore, they
observed that the results between two inverted filters can be
inferred from each other. These methods minimize the total
number of operations without any accuracy drops and achieve
a high operation reduction ratio.

III. Proposed Approach

A. Multiplexer-based Similarity Operation

In hardware realization, a filter will be unfolded into a 1-
D weight vector, turning the convolutional operation into the
same matrix multiplication as a fully connected layer. Fig.
2(a) shows an example of the unfolding operation for a 64×3×3
filter. Here, we describe our first variable L, which controls
how we decompose an operation. In each clock cycle, L-bit
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Fig. 4. An example of our PE architecture when L = 4.

XNOR operation and the succeeding popcount operation will
be calculated in the PE. An L-bit segment in the 1-D weight
vector will be considered as one partial-filter. Fig. 2(b) shows
the decomposed result of the weight vector when L = 4. Here,
we introduce our multiplexer-based similarity operation in-
spired by the following two observations. First, when L = 4,
the number of the combinations of the partial-filter is 2L = 16.
However, the total number of operations we need to perform
for this segment is equal to the output channel size = 64, which
is much larger than the combination of this partial-filter. Sec-
ond, when two partial-filters have only one bit different, their
XNOR-popcount results can be derived from each other, ie.,
when we obtain one result, the other result can be obtained by
derivation. The following formula shows our multiplexer-based
similarity operation:

f(y) =

{
f(x) + 1, if Ii = 1

f(x) + (−1), if Ii = 0

where f(x) and f(y) are the XNOR-popcount results of the
partial-filter x and y, Ii is the input bit located at position i of
the input segment I. As shown in Fig. 3(a), weight values in
red circles in the partial-filter x and y are 0 and 1, respectively.
After generating f(x), we can infer f(y) from f(x) by evaluat-
ing Ii. With this method, we can obtain all the partial-results
of the partial-filters with their corresponding input segments
in one clock cycle. Moreover, motivated by the study [2], we
utilize the concept of inverse filter to reduce the needed opera-
tions. Fig. 3(b) shows an example of one possible relationship
between any two partial-filters when L = 4. In our PE de-
sign, we first perform an XNOR-popcount operation between
the input segment and 0000 as the base for the derivations.
Using the multiplexer-based similarity operations, we can de-
rive the remaining (2L − 1) partial-results from the computed
partial-results. Fig. 4 shows the corresponding architecture
of our PE design for the multiplexer-based similarity opera-
tion. Our PE will generate 2L/2 partial-results in one clock
cycle and store them in the result sharing buffer. Benefiting
from reusing the results, we can further reduce the usage of
hardware resources.

B. Average Redundancy Ratio

Since we will generate the partial-results from all the com-
binations of the partial-filter and their corresponding input
segments, there must be redundant operations. Therefore, we
introduce the average redundancy ratio to evaluate the number
of redundant operations in our PE design as follows:

average redundancy ratio =
|redundant operation|

|operation|

where |redundant operation| is the number of redundant oper-
ations and |operation| is the number of performed operations.

Since we find that different layers with the same output chan-
nel size will have a similar number of redundant operations, the
following discussion focuses on the combinations of the output
channel size and L. By calculating the average redundancy ra-
tio between various lengths of L for each output channel size,
we can find the most appropriate length of L minimizing the
number of redundant operations for each output channel size.
We set the average redundancy ratio to be less than 0.1 in our
design.

C. Accumulation Controller

The accumulation controller is used to realize the sharing
of the partial-results generated from the PE. We utilize the
accumulation index vector to indicate how the accumulation
controller distributes the partial-results, which is illustrated
in Fig. 5(a). Each partial-result from the result sharing
buffer will pair with an accumulation index vector of length
output channel size × 2. A set of two bits represents the
distribution information. The left bit indicates whether the
accumulation result of the current output channel needs this
partial-result or not. The right bit indicates that the accu-
mulation result needs the inverse result or the original result.
The architecture of the accumulation controller is illustrated
in Fig. 5(b). After receiving the partial-results from the PE,
the weight distributor will distribute the result according to
the accumulation index vector. The results will be added to
the accumulation result buffer by the result accumulator.

D. Pruning Comparator

After generating the accumulation result of each output
channel, a pruning comparator is used to further reduce re-
dundant operations. When the current accumulation results
of all the output channels can imply the binarized outputs,
we skip the remaining operations and generate the outputs in
advance. We use the pruning comparator to evaluate whether
all the accumulation results meet one of the two pruning con-
ditions as follows:

Condition1 : Accumulation ≥ T. Accumulation is the cur-
rent accumulation result, and T is the threshold value of the
corresponding output channel. Once the Accumulation is
greater than or equal to T during the operation, the binarized
output can be set to 1 and skip the remaining operations.

Condition2 : Accumulation + L ∗ (Acct–Accc) < T. Acct
and Accc are the amount of partial-results needed to gener-
ate this binarized output and the amount of current accumu-
lated partial-results, respectively, i.e., Acct–Accc represents
the amount of remaining partial-results. Since in each clock
cycle, our PE calculates L-bit multiplexer-based similarity op-
eration, the maximum value of each partial-result is L, and the
maximum accumulation result of the remaining partial-results
is L ∗ (Acct–Accc). Therefore, if the summation of the current
accumulation result and the maximum accumulation result of
the remaining partial-results is less than the threshold value
T , we can set the binarized output to 0.

E. Overall Architecture

The architecture of our design is shown in Fig. 6. Data in
the input feature map from the previous layer are streamed
into our accelerator via the image data stream. Variable P is
the number of parallel PEs in our accelerator. Both P and L
are configurable to control the throughput and the hardware
usage. When PEs generates all the combinations of partial-
results, the accumulation controller will distribute and accu-
mulate the partial-results. Next, the pruning comparator will
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(a)

(b)

Fig. 5. (a) An illustration of accumulation index vector. (b) An
illustration of accumulation controller.

Fig. 6. The overall architecture of our proposed accelerator.

evaluate the current accumulation results based on the pruning
conditions and skip the operations if the accumulation results
satisfy one of the pruning conditions. The generated binarized
outputs will then be stored in the output feature map buffer
for the succeeding layers.

IV. Experimental Results

We use Xilinx ZCU104 FPGA to evaluate our proposed ar-
chitecture. As for the network models and datasets, we use
VGG-13 like model we trained for Tiny ImageNet. The num-
ber of LUTs, registers, and operation time are reported in
Vivado HLx Editions 2020.2. Results show that our proposed
architecture can reduce 99.7% operations for the network with-
out any accuracy loss.

In TABLE I, we compare the hardware utilization and the
inference time of the proposed architecture against the reim-
plemented [12] in the case of L = 4, P = 2 for each layer in
Tiny ImageNet. Since the inputs of the first layer of Tiny Im-
ageNet is floating point numbers and our architecture is based
on binarized numbers, the implementations of this dataset will
start from the LAYER2. The CONV refers to a convolutional
layer, and the FC refers to a fully connected layer. Accord-
ing to TABLE I, our accelerator can achieve speedups very
close to the output channel size of convolutional layers, and
the output size of fully connected layers, while elevating hard-
ware utilization. The reason for the speedup is that we can
simultaneously accumulate the results of the number of the
output channel size in one clock cycle.

TABLE I
Results Comparison Between Reimplemented [12] and Our Approach

with L = 4, P = 2 on Tiny ImageNet.

LAYERi - type (Size) Work LUTs Registers Time(ns) Speedup
LAYER2 [12] 125 52 69,120,010 -

CONV (64x60x60) Ours 78 30 1,080,010 64.0
LAYER3 [12] 125 52 30,105,610 -

CONV (128x28x28) Ours 78 30 235,210 128.0
LAYER4 [12] 125 52 50,878,474 -

CONV (128x26x26) Ours 78 30 397,498 128.0
LAYER5 [12] 125 52 18,213,898 -

CONV (256x11x11) Ours 78 30 71,158 256.0
LAYER6 [12] 125 52 24,136,714 -

CONV (256x9x9) Ours 78 30 94,294 256.0
LAYER7 [12] 125 52 29,202,442 -

CONV (512x7x7) Ours 78 30 57,046 511.9
LAYER8 [12] 125 52 29,644,810 -

CONV (512x5x5) Ours 78 30 57.910 511.9
LAYER9 [12] 125 52 10,672,138 -

CONV (512x3x3) Ours 78 30 20,854 511.8
LAYER10 [12] 125 52 1,185,802 -

CONV (512x1x1) Ours 78 30 2,326 509.8
LAYER11 [12] 125 52 548,874 -

FC (512x2048) Ours 78 30 278 1,974.4
LAYER12 [12] 125 52 530,442 -

FC (2048x512) Ours 78 30 1,046 507.1
LAYER13 [12] 125 52 53,610 -

FC (512x200) Ours 78 30 278 192.8

V. Conclusion

In this paper, we propose an accelerator design to reduce
the operations of convolutional and fully connected layers in
BNNs. We convert the original XNOR-popcount operation
into a multiplexer-based similarity operation to reuse the com-
puted partial-results. In addition, with the accumulation con-
troller, we can accumulate the partial-results into the accu-
mulation result buffer. Furthermore, the pruning comparator
is used to lower the number of unnecessary operations. Ex-
perimental results show that our accelerator can achieve up to
1974 speedup and reduce operations by an average of 99.6%,
without any accuracy loss.
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